In the most basic sense, networks work by sending electrical signals across cables. These signals, however, attenuate as they traverse each cable; at some point along a cable, the signal may fail to carry any further. Devices called repeaters are used in digital networks to regenerate signals as they go down cables so that they can reach destination hosts. Repeaters are often used to increase the physical size of LANs, allowing additional systems and peripherals to connect to a preexisting LAN. Note, however, that Ethernet does not need repeaters, because of the limited distances over which traffic to segments travels.
Contrasted with other types of network components, repeaters are in many respects more passive in their functionality. In the most elementary sense, they simply take signals, magnify them, and then send them along a network cable without the capacity to selectively filter, in any way, what is sent. A potential problem in connection with repeaters, therefore, is that a repeater can potentially overwhelm a network with volumes of traffic. Hosts in any part of a network in which repeaters are present can produce an enormous amount of traffic volume even though some, much, or all of this traffic may be superfluous to the systems along the way.
You might think, therefore, that repeaters would be frequent targets of network attacks in the Windows NT or any other networking environment. Gaining unauthorized access to a repeater or sending network traffic to a repeater in a manner that causes the repeater to fail or other possible attack scenarios could conceivably lead to widespread denial-of-service. Attacks against other components of networks (for example, routers and firewalls) are, however, generally not only easier to remotely perpetrate, but they are also more likely to subvert higher-level network functionality, such as routing.
Leave a Reply
You must be logged in to post a comment.